LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACE
نویسندگان
چکیده
منابع مشابه
Weingarten spacelike hypersurfaces in a de Sitter space
We study some Weingarten spacelike hypersurfaces in a de Sitter space S 1 (1). If the Weingarten spacelike hypersurfaces have two distinct principal curvatures, we obtain two classification theorems which give some characterization of the Riemannian product H(1−coth ̺)× S(1 − tanh ̺), 1 < k < n − 1 in S 1 (1), the hyperbolic cylinder H(1 − coth ̺) × S(1 − tanh ̺) or spherical cylinder H(1 − coth ̺)×...
متن کاملPartial Generalizations of Some Conjectures in Locally Symmetric Lorentz Spaces
In this paper, first we give a notion for linear Weingarten spacelike hypersurfaces with P + aH = b in a locally symmetric Lorentz space Ln+1 1 . Furthermore, we study complete or compact linear Weingarten spacelike hypersurfaces in locally symmetric Lorentz spaces Ln+1 1 satisfying some curvature conditions. By modifying Cheng-Yau’s operator given in [7], we introduce a modified operator L and...
متن کاملA Weierstrass representation for linear Weingarten spacelike surfaces of maximal type in the Lorentz–Minkowski space
In this work we extend the Weierstrass representation for maximal spacelike surfaces in the 3-dimensional Lorentz–Minkowski space to spacelike surfaces whose mean curvature is proportional to its Gaussian curvature (linear Weingarten surfaces of maximal type). We use this representation in order to study the Gaussian curvature and the Gauss map of such surfaces when the immersion is complete, p...
متن کاملLinear Weingarten hypersurfaces in a unit sphere
In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].
متن کاملCompact Space-like Hypersurfaces with Constant Scalar Curvature in Locally Symmetric Lorentz Spaces
Let Nn+p p be an (n + p)-dimensional connected semi-Riemannian manifold of index p. It is called a semi-definite space of index p. When we refer to index p, we mean that there are only p negative eigenvalues of semi-Riemannian metric of Nn+p p and the other eigenvalues are positive. In particular, Nn+1 1 is called a Lorentz space when p = 1. When the Lorentz space Nn+1 1 is of constant curvatur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2012
ISSN: 1015-8634
DOI: 10.4134/bkms.2012.49.2.271